Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.

Identifieur interne : 001037 ( Main/Exploration ); précédent : 001036; suivant : 001038

Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.

Auteurs : Natalia Wojciechowska [Pologne] ; Katarzyna Marzec-Schmidt [Pologne] ; Ewa M. Kalemba [Pologne] ; Aleksandra Zarzy Ska-Nowak [Pologne] ; Andrzej M. Jagodzi Ski [Pologne] ; Agnieszka Bagniewska-Zadworna [Pologne]

Source :

RBID : pubmed:30373512

Descripteurs français

English descriptors

Abstract

BACKGROUND

Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing.

RESULTS

We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection.

CONCLUSIONS

The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.


DOI: 10.1186/s12870-018-1439-6
PubMed: 30373512
PubMed Central: PMC6206944


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.</title>
<author>
<name sortKey="Wojciechowska, Natalia" sort="Wojciechowska, Natalia" uniqKey="Wojciechowska N" first="Natalia" last="Wojciechowska">Natalia Wojciechowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. natalia.wojciechowska@amu.edu.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marzec Schmidt, Katarzyna" sort="Marzec Schmidt, Katarzyna" uniqKey="Marzec Schmidt K" first="Katarzyna" last="Marzec-Schmidt">Katarzyna Marzec-Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zarzy Ska Nowak, Aleksandra" sort="Zarzy Ska Nowak, Aleksandra" uniqKey="Zarzy Ska Nowak A" first="Aleksandra" last="Zarzy Ska-Nowak">Aleksandra Zarzy Ska-Nowak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagodzi Ski, Andrzej M" sort="Jagodzi Ski, Andrzej M" uniqKey="Jagodzi Ski A" first="Andrzej M" last="Jagodzi Ski">Andrzej M. Jagodzi Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. agabag@amu.edu.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30373512</idno>
<idno type="pmid">30373512</idno>
<idno type="doi">10.1186/s12870-018-1439-6</idno>
<idno type="pmc">PMC6206944</idno>
<idno type="wicri:Area/Main/Corpus">000B98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B98</idno>
<idno type="wicri:Area/Main/Curation">000B98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B98</idno>
<idno type="wicri:Area/Main/Exploration">000B98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.</title>
<author>
<name sortKey="Wojciechowska, Natalia" sort="Wojciechowska, Natalia" uniqKey="Wojciechowska N" first="Natalia" last="Wojciechowska">Natalia Wojciechowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. natalia.wojciechowska@amu.edu.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marzec Schmidt, Katarzyna" sort="Marzec Schmidt, Katarzyna" uniqKey="Marzec Schmidt K" first="Katarzyna" last="Marzec-Schmidt">Katarzyna Marzec-Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zarzy Ska Nowak, Aleksandra" sort="Zarzy Ska Nowak, Aleksandra" uniqKey="Zarzy Ska Nowak A" first="Aleksandra" last="Zarzy Ska-Nowak">Aleksandra Zarzy Ska-Nowak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagodzi Ski, Andrzej M" sort="Jagodzi Ski, Andrzej M" uniqKey="Jagodzi Ski A" first="Andrzej M" last="Jagodzi Ski">Andrzej M. Jagodzi Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. agabag@amu.edu.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (physiology)</term>
<term>Cell Survival (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Plant Cells (physiology)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (anatomy & histology)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (physiology)</term>
<term>Populus (cytology)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (physiologie)</term>
<term>Cellules végétales (physiologie)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Populus (cytologie)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (anatomie et histologie)</term>
<term>Racines de plante (cytologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saisons (MeSH)</term>
<term>Survie cellulaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Autophagie</term>
<term>Cellules végétales</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Plant Cells</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Survival</term>
<term>Gene Expression Regulation, Plant</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Saisons</term>
<term>Survie cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30373512</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Oct</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>260</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1439-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wojciechowska</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. natalia.wojciechowska@amu.edu.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marzec-Schmidt</LastName>
<ForeName>Katarzyna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kalemba</LastName>
<ForeName>Ewa M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zarzyńska-Nowak</LastName>
<ForeName>Aleksandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318, Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jagodziński</LastName>
<ForeName>Andrzej M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bagniewska-Zadworna</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland. agabag@amu.edu.pl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2012/07/E/NZ9/00194</GrantID>
<Agency>National Science Center, Poland</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016/23/N/NZ3/00073</GrantID>
<Agency>National Science Center, Poland</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ATG genes</Keyword>
<Keyword MajorTopicYN="N">ATG8 protein</Keyword>
<Keyword MajorTopicYN="N">Autophagy</Keyword>
<Keyword MajorTopicYN="N">Fine roots</Keyword>
<Keyword MajorTopicYN="N">Leaves</Keyword>
<Keyword MajorTopicYN="N">Senescence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30373512</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1439-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1439-6</ArticleId>
<ArticleId IdType="pmc">PMC6206944</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cells. 2012 Nov;34(5):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22772908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):953-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Sep;17(9):526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22694835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):505-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25756288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(409):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Oct;55(406):2147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18790996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(5):818-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Oct;39:8-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28528166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Aug 1;349(2):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8050581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23215962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2018 Mar;20(2):167-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29178615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 May 20;121(4):567-577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15907470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Oct;18(5):363-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2013 Dec;34(22-23):3234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24347272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Sep;99(9):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22917946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Sep;79(6):1044-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24961791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 May;10(5):878-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24674921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cell Rev. 2016 Dec;12(6):621-633</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27696271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Oct;64(1):151-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Jun;4(6):565-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19816145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Apr;5(4):305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Sep;6(9):1408-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21847024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jan;69(1):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(1):74-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21645148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24687977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(14):4029-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2097-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Aug;53(8):1355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22764279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Dec;97:246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26492132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2016 Mar;253(2):259-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25837009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2006 Jan;98(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16354162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):823-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22686426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Mar;2(3):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11265251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 May-Jun;3(3):257-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17312382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(4):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(6):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15743448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):683-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Dec;188(4):1065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20966154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Oct;178(2):654-671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30126868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):142-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):453-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18310084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):33105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Oct;4(7):961-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Feb;64(4):1111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2914-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 May;27(5):1389-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25944100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Sep;238:178-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1837(4):512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24269172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Nov;224(6):1279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Feb 12;15:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 May;194(3):732-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Dec;95(12):1506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(14):3543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Dec;9(12):1922-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Mar;97(3):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394024</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Wojciechowska, Natalia" sort="Wojciechowska, Natalia" uniqKey="Wojciechowska N" first="Natalia" last="Wojciechowska">Natalia Wojciechowska</name>
</noRegion>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
<name sortKey="Jagodzi Ski, Andrzej M" sort="Jagodzi Ski, Andrzej M" uniqKey="Jagodzi Ski A" first="Andrzej M" last="Jagodzi Ski">Andrzej M. Jagodzi Ski</name>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
<name sortKey="Marzec Schmidt, Katarzyna" sort="Marzec Schmidt, Katarzyna" uniqKey="Marzec Schmidt K" first="Katarzyna" last="Marzec-Schmidt">Katarzyna Marzec-Schmidt</name>
<name sortKey="Zarzy Ska Nowak, Aleksandra" sort="Zarzy Ska Nowak, Aleksandra" uniqKey="Zarzy Ska Nowak A" first="Aleksandra" last="Zarzy Ska-Nowak">Aleksandra Zarzy Ska-Nowak</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30373512
   |texte=   Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30373512" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020